Гиперзвуковая авиация. Гиперзвуковые ударные системы нового поколения

О гонке вооружений в данной сфере говорить пока рано - на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).


Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы - это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты - вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук - штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.


Стремительный разведчик
SR-72 - перспективный американский летательный аппарат, который может стать функциональным аналогом легендарного SR-71 - сверхзвукового и сверхманевренного разведчика. Главное отличие от предшественника - отсутствие пилота в кабине и гиперзвуковая скорость.

Удар с орбиты

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах - маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего имеются в виду следующие характеристики: скорость полета - 5−10 М (6150−12 300 км/ч) и выше, охватываемый рабочий диапазон высот - 25−140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов - это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов. Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 (6 М), самолет «Аякс» (8−10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета (6 М) на двух видах топлива - водороде для больших скоростей полета и керосине для меньших.


Разрабатываемая в США гиперзвуковая ракета Boeing X-51A Waverider

Оставил свой след в инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«Циркон» для флота

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) «Циркон». Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота «Петр Великий». Скорость 5−6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км. Разработчик ПКР «Циркон» - НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».


Крылатый удар
Беспилотный гиперзвуковой планирующий самолет, разрабатывавшийся в КБ Туполева в конце 1950-х годов, должен был представлять собой последнюю ступень ракетной ударной системы.

Хитроумная боеголовка

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе) на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.


Элемент планера гиперзвукового , которое так и осталось проектом
Длина самолета должна была составить 8 м, размах крыльев - 2,8 м.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011−2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

Подняться ввысь

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4−5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.


SR-71
Сегодня этот самолет, давно снятый с вооружения, занимает заметное место в истории авиации. На смену ему идет гиперзвук.

Гиперзвук Поднебесной

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М. Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

Проекты Америки

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon), гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА Х-43 Hyper-X, прототип гиперзвуковой крылатой ракеты Х-51А Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.


Космическая «спираль»
Гиперзвуковой самолет-разгонщик, разрабатывавшийся по проекту «Спираль». Также предполагалось, что в систему будет входить военный орбитальный самолет с ракетным ускорителем.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА SR-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50−80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. SR-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя - он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000 °C и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5−6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 - в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

О гонке вооружений в данной сфере говорить пока рано — на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).

Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы — это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты — вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук — штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.

SR-72 — перспективный американский летательный аппарат, который может стать функциональным аналогом легендарного SR-71 — сверхзвукового и сверхманевренного разведчика. Главное отличие от предшественника — отсутствие пилота в кабине и гиперзвуковая скорость.

Удар с орбиты

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах — маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего имеются в виду следующие характеристики: скорость полета — 5−10 М (6150−12 300 км/ч) и выше, охватываемый рабочий диапазон высот — 25−140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов — это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов. Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 (6 М), самолет «Аякс» (8−10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета (6 М) на двух видах топлива — водороде для больших скоростей полета и керосине для меньших.


Космическая «спираль» Гиперзвуковой самолет-разгонщик, разрабатывавшийся по проекту «Спираль». Также предполагалось, что в систему будет входить военный орбитальный самолет с ракетным ускорителем.

Оставил свой след в истории инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«Циркон» для флота

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) «Циркон». Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота «Петр Великий». Скорость 5−6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км. Разработчик ПКР «Циркон» — НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».


Беспилотный гиперзвуковой планирующий самолет, разрабатывавшийся в КБ Туполева в конце 1950-х годов, должен был представлять собой последнюю ступень ракетной ударной системы.

Хитроумная боеголовка

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе) на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.


Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11 000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18 000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.


Длина самолета должна была составить 8 м, размах крыльев — 2,8 м.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011−2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

Подняться ввысь

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4−5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.


Разрабатываемая в США гиперзвуковая ракета Boeing X-51A Waverider

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.

Гиперзвук Поднебесной

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М. Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.


SR-71 Сегодня этот самолет, давно снятый с вооружения, занимает заметное место в истории авиации. На смену ему идет гиперзвук.

Проекты Америки

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon), гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА Х-43 Hyper-X, прототип гиперзвуковой крылатой ракеты Х-51А Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.


Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА SR-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50−80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. SR-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя — он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000 °C и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5−6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 — в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

в Избранное в Избранном из Избранного 0

Как отмечалось ранее, начиная с 70-х годов в ОКБ велись работы по созданию самолетов, способных выполнять длительный полет на крейсерских гиперзвуковых скоростях,
К означенному периоду в авиационно-космической технике и технологиях были достигнуты значительные результаты, полеты на сверхзвуковых скоростях стали обыденным явлением для самолетов военного назначения, внедрялись в эксплуатацию первые сверхзвуковые пассажирские самолеты, осуществлялись пилотируемые и беспилотные полеты в космос. Появились уже и серийные самолеты, летавшие в атмосфере со скоростями, соответствующими М=3 (МиГ-25, SR-71). Космические спускаемые аппараты и воздушно-космические самолеты с большими числами М совершали полеты на очень больших высотах, кратковременно проходя плотные слои атмосферы с гиперзвуковыми скоростями.

Общая диалектика развития авиационной техники, а также желание военно-политического руководства стран по обе стороны «железного занавеса» получить в свои руки очередное абсолютное оружие, поставило перед авиационной промышленностью передовых авиационных держав задачу создания летательных аппаратов самолетного типа с большими гиперзвуковыми скоростями, соответствующим М=3-10, способными выполнять полет на высотах 30-35 км. Подобный летательный аппарат по своим техническим решениям (как по части силовой установки, так и по своей конструкции) должен был в значительной степени отличаться от современных самолетов и космических аппаратов. Существовавшие типы ВРД, эффективно использовавшие атмосферу при полетах на малых высотах, из-за ограничений по температуре были приемлемы только для летательных аппаратов со скоростями полета, соответствующим М=3. С другой стороны, ракетные двигатели, для которых таких ограничений не было, из-за необходимости нести на борту полный запас топлива (горючее + окислитель), являлись нерациональными для продолжительных полетов в атмосфере.

Наиболее рациональным для принятых режимов будущего гиперзвукового самолета являлся прямоточный воздушно-реактивный двигатель (ПВРД) в комбинации с разгонным двигателем (ТРД или ЖРД). С целью достижения высокой эффективности силовой установки в качестве горючего предлагалось использовать жидкий водород. Для полетов в диапазоне чисел М=3-5, наиболее приемлемой определялась комбинированная силовая установка, содержащая турбореактивный и прямоточный двигатель, работающие на углеводородном горючем или сжиженным природным газе (СПГ). Для полетов со скоростями, превышающих М=5-6, наиболее подходящим являлся ПВРД на жидком водороде с разгонными ТРД на керосине или на жидком водороде.

Коренных изменений, с учетом способности летательного аппарата длительно воспринимать в полете высокие и сверхвысокие температуры, требовала конструкция подобного летательного аппарата. Выбор конструкции должен был определяться следующими факторами: с одной стороны, интенсивностью аэродинамического нагрева и его продолжительностью, а с другой стороны, кратностью ее использования или ресурсом.

Накопленный опыт показывал, что для летательных аппаратов, подверженных интенсивному аэродинамическому нагреву продолжительное время перспективными представлялись следующие типы конструкций: «горячая», теплоизолированная и активно-охлаждаемая. «Горячая» конструкция непосредственно контактируете окружающей средой. Теплоизолированная конструкция защищена теплоизлучающим слоем или экраном. Конструкция с активным охлаждением предполагала использование системы циркуляции теплоносителя, отводящего тепло от обшивки. Основными проблемами, требовавшими решения, являлись ослабление температурных напряжений, уменьшение коробления и увеличение ресурса конструкции. Одним из направлений, позволявшим ослабить температурные напряжения, являлось использование теплозащитных панелей (гофрированных, трубчатых и т.п.). Теплоизолированные конструкции предлагалось выполнять как сочетание силовой конструкции и теплозащиты. Самолет с умеренными требованиями к ресурсу и с крейсерским числом полета М=6 мог иметь «горячую» конструкцию или экранированную конструкцию, или упрощенную пассивную систему охлаждения. Для самолетов с большим ресурсом активная система охлаждения представлялась необходимой. В системе должны были использоваться промежуточные теплоноситель (например этилен гликоль), циркулирующий в каналах обшивки, передающий тепло через теплообменник жидкому водороду, который после этого должен был служить охладителем компонентов двигателя и поступать в камеру сгорания. Требования к активной системе могли быть снижены применением теплозащитных экранов или теплоизоляции.

Необходимость использования жидкого водорода в качестве топлива гиперзвукового самолета требует разработки высокоэффективной конструкции баков и низкотемпературной теплоизоляции (НТИ). Несмотря на то, что начиная с 60-х гг. было исследовано как в США, так и в СССР много различных конструкций криогенных баков и НТИ ни одна из этих конструкций не удовлетворяет как техническим, так и экономическим требованиям для гиперзвукового самолета. Так, конструкции криогенных баков и НТИ, разработанные лля применения в ракетной технике, имеют ограниченный ресурс. Отсутствие необходимости их многократного использования не требовало подробных исследований срока службы НТИ при длительном влиянии термоциклирова-ния, вибрации, климатических условий, старения материалов с точки зрения деградации их теплофизичес-ких и физикомеханических характеристик во времени.

Исследования по вопросам создания самолета на криогенном топливе показали, что среди множества технических проблем, одной из наиболее существенных является тепловая защита криогенных топливных баков.

Имевшийся, на тот период, задел в области гиперзвуковой аэродинамики был более весомый, чем в области конструкций и силовых установок будущих гиперзвуковых самолетов. Многие результаты аналитических и экспериментальных исследований, проведенных по другим авиационным, ракетным и авиационно-космическим программам (в частности по МВКА) были во многом применимы к гиперзвуковым самолетам. Предстояло еще много сделать для определения оптимальной аэродинамической схемы, обеспечивающей полезное взаимодействие силовой установки и планера гиперзвукового самолета. Как и для обычных самолетов, необходимо было вести исследования по применению систем активного управления при уменьшении запасов статической устойчивости, что должно было снизить размеры и массу летательного аппарата.

В СССР работы по гиперзвуковым самолетам в ударных вариантах начались в середине 70-х годов. К работам над этой перспективной тематикой было подключено несколько авиационных ОКБ страны и научно-исследовательских организаций авиационной промышленности.

В Туполевском ОКБ работы шли в следующих направлениях:

  • - исследования и проектирование гиперзвукового дальнего ударного самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=4 - проект «230» (Ту-230). Проектирование было начато в 1983 г. Эскизный проект был готов в 1985 г. Взлетная масса самолета определялась в пределах 180 т. Силовая установка должна была состоять из четырех комбинированных ТРД типа Д-80. Максимальный запас топлива (керосин) - 106 т. Высота крейсерского полета 25000 - 27000 м, максимальная дальность полета определялась в 8000 - 10000 км при продолжительности полета 2,3 часа, (длина самолета - 54,15 м, размах крыла - 26,83 м);
  • - исследования и проектирование гиперзвукового дальнего самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6 - проект «260» (Ту-260). Это был ЛА с двигателями, работающими на крейсерском режиме на жидком водороде с дальностью полета до 12000 км при 10 т полезной нагрузки;
  • - исследования и проектирование гиперзвукового межконтинентального самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6, при заданной максимальной дальности полета до 16000 км и с полезной нагрузкой до 20 т - проект «360» (Ту-360). Высота крейсерского полета 30000 - 33000 м.

По теме «260» и «360» в ОКБ было подготовлено несколько вариантов гиперзвукового самолета с силовой установкой с 4-6 маршевыми ПВРД и с шестью разгонными ТРДЦ тягой по 22000 кгс. Расчетный удельный расход топлива ПВРД на крейсерском режиме составлял 1,04 кг/кгсч. Выбранная компоновочно-аэродинамическая схема позволила получить расчетные значения качества 5,2 - 5,5. Для разгонных ТРДЦ предполагалось использовать керосин.

В рамках работ по гиперзвуковым самолетам в ОКБ было подготовлено предложение по проекту гиперзвукового пассажирского самолета, рассчитанного на крейсерский полет со скоростью, соответствующей М = 4,5-5 на высотах 28 - 32 км. Дальность полета определялась в 8500 - 10000 км. Число пассажиров - 250 - 280 человек. Силовая установка - комбинированная (ТРД + ПВРД), в качестве топлива должен был использоваться сжиженный природный газ.

В ходе исследований по гиперзвуковым самолетам в ОКБ были проведены обширные исследования материалов и конструкций, работающих в условиях интенсивного аэродинамического нагрева. Был сделан вывод, что одними из наиболее перспективных являются конструкции с металлическими внешними поверхностями. Разработка таких конструкций требовала решения ряда задач, основными среди которых являлись поиски новых конструкционных материалов с повышенным сопротивлением окислению и увеличенным пределом ползучести, а также разработка качественно новых типов многослойных металлических конструкций, эксплуатирующихся в условиях больших температурных градиентов. Основными типами таких конструкций, которые рассматривались в ОКБ для гиперзвуковых самолетов, были:

  • - металлические теплозащитные экраны для снижения тепловых потоков к основной силовой конструкции, не включенные в работу силовой конструкции и проектируемые на местную поперечную нагрузку;
  • - панели, обладающие как свойствами силовой конструкции, так и теплоизолирующими свойствами.

Одними из наиболее эффективных по несущей способности при работе в условиях нагрева до 250 - 500 °С являются многослойные конструкции из титановых сплавов.

В ходе этих исследований были разработаны технологии получения многослойных титановых панелей с ферменным заполнителем методом СПФ/ДС (сверхпластичная формовка и диффузионная сварка), в котором за одну операцию производилось и формирование из листового материала обшивок, заполнителя, элементов заготовок и соединения их между собой в готовую монолитную конструкцию.

Проводились исследования по низкотемпературной теплозащите (НТИ) топливных баков с криогенным топливом. Как наиболее перспективная рассматривалась теплозащита на основе экранно-вакуумной теплоизоляции (ЭВТИ) с мягкой герметичной оболочкой, обжатой атмосферным давлением для внешней НТИ, или давлением водорода для внутренней НТИ. Конструкция бака при этом может выполняться как из алюминиевых или титановых сплавов, так и из композиционных материалов. В ОКБ были изготовлены модельные баки, как с НТИ на основе пенопластов, так и с обжатой атмосферным давлением ЭВТИ. Были проведены ресурсные испытания этих баков с использованием жидкого азота.

Большое внимание уделялось проектированию криогенных топливных баков с большим ресурсом работы. При их разработке были созданы специальные нормы прочности, обеспечивающие необходимую герметичность в процессе эксплуатации.

Все эти и другие работы ОКБ имели большое значение для решения проблем создания гиперзвуковых летательных аппаратов, над которыми в те годы работало ОКБ, а также в работах по созданию криогенных самолетов, в частности, экспериментального Ту-155, проектов криогенных пассажирских самолетов Ту-204К, Ту-334К и др., над которыми ОКБ продолжает работать в настоящее время.

Сегодня ОКБ ОАО «Туполев» является обладателем уникальных технологий по криогенной авиационной технике, многие из которых были освоены в период работ по ВКС и гиперзвуковым самолетам.

Гиперзвуковые летательные аппараты, которые в ближайшем будущем достигнут технической зрелости, возможно, радикально изменят всю сферу ракетных вооружений. И в эту гонку России придется включаться, иначе возникнет риск потерять слишком много. Ведь речь идет ни много ни мало о научно-технической революции.

О гонке вооружений в данной сфере говорить пока рано - на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).

Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы - это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты - вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук - штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.

Стремительный разведчик: SR-72 - перспективный американский летательный аппарат, который может стать функциональным аналогом легендарного SR-71 - сверхзвукового и сверхманевренного разведчика. Главное отличие от предшественника - отсутствие пилота в кабине и гиперзвуковая скорость.

Удар с орбиты

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах - маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего, имеются в виду следующие характеристики: скорость полета - 5−10 М (6150−12 300 км/ч) и выше, охватываемый рабочий диапазон высот - 25−140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов - это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов.

Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 (6 М), самолет «Аякс» (8−10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета (6 М) на двух видах топлива - водороде для больших скоростей полета и керосине для меньших.

Разрабатываемая в США гиперзвуковая ракета Boeing X-51A Waverider

Оставил свой след в истории инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«Циркон» для флота

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) . Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота . Скорость 5−6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км.

Разработчик ПКР «Циркон» - НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».

Крылатый удар: беспилотный гиперзвуковой планирующий самолет, разрабатывавшийся в КБ Туполева в конце 1950-х годов, должен был представлять собой последнюю ступень ракетной ударной системы.

Хитроумная боеголовка

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе) на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых . Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.

Элемент планера гиперзвукового оружия, которое так и осталось проектом. Длина самолета должна была составить 8 м, размах крыльев - 2,8 м.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011−2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться .

Подняться ввысь

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4−5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении и . Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.

SR-71: сегодня этот самолет, давно снятый с вооружения, занимает заметное место в истории авиации. На смену ему идет гиперзвук.

Гиперзвук Поднебесной

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М.

Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

Проекты Америки

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon), гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА Х-43 Hyper-X, прототип гиперзвуковой крылатой ракеты Х-51А Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.

Космическая «спираль»: гиперзвуковой самолет-разгонщик, разрабатывавшийся по проекту «Спираль». Также предполагалось, что в систему будет входить военный орбитальный самолет с ракетным ускорителем.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА SR-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50−80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. SR-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя - он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000 °C и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5−6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 - в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

Гиперзвуковым самолетом называется такой, скорость которого может сильно превышать скорость звука (1224 км/час), то есть примерно пять-шесть тысяч км/час. Подобные аппараты сегодня выпускают несколько стран мира. Россия также не осталась в стороне.

Надо сказать, что создание различных гиперзвуковых летательных аппаратов в мире началось со второй половины прошлого века. Но сегодня, разумеется, самолеты становятся все более совершенными и обладают небывалыми преимуществами и возможностями.

Гиперзвуковой самолет России Ю-71 быстро перешел из стадии разработки, которая длилась в течение нескольких лет, в стадию испытаний еще в прошлом году. Испытывали новоиспеченный летательный аппарат под Оренбургом. Самолету, чтобы преодолеть расстояние от мест испытаний до столицы США, потребуется около пятидесяти минут, а до Лондона – двадцать.

Что может Ю-71?

Ю-71 был создан для использования его для решения военных задач. Например, гиперзвуковой самолет сможет доставлять боевые припасы и другие необходимые приспособления в кратчайшие сроки и на большие расстояния (ядерные боеголовки).

Кроме того, Ю-71 способен проводить контроль территории, а также использоваться в качестве аппарата штурмовой авиации. Российский гиперзвуковой самолет способен летать со скоростью более одиннадцати тысяч км/час. Все это дополняется его необычайной маневренностью, позволяющей даже выйти в ближний космос.

Как и для чего планируют использовать Ю-71?

По данным некоторых экспертов, в ближайшее десятилетие планируется ввести около двадцати самолетов в Ракетные войска стратегического назначения. Разместят их поблизости от Домбаровского поселка (Оренбургская область). Необходимо отметить, что Ю-71 разработан в двух модификациях: обыкновенной и стратегической.

По поводу Ю-71 существует множество разнообразных мнений. Часть специалистов считает, что этот самолет – боеголовка, изначально прикрепляющаяся к ракете, а затем отделяющаяся (в конце ее полета). Смысл этого заключается в возможности преодоления гиперзвуковым самолетом систем противовоздушной обороны.

Есть также данные, что Ю-71 не что иное, как одна из частей проекта 4202, являющегося секретным. В России, якобы, намереваются запустить гиперзвуковой проект для того, чтобы оказать давление на Соединенные Штаты. Переговоры по контролю вооружения в этом случае могут пройти очень удачно.

Какой будет судьба российского самолета Ю-71 - неизвестно. Нам остается лишь ждать и следить за развитием событий.

Военная тайна. Испытания Ю-71, Сирия. Репортаж.

 
Статьи по теме:
Когда и почему Плутон исключили из списка планет?
На фоне шумихи в СМИ, вызванной американским космическим аппаратом «Новые Горизонты» , предлагаем Вам вспомнить историю Плутона, а так же разобраться в причинах, по которым его исключили из списка планет. История Плутона В конце XIX – начале XX в. ученые-
Гиперзвуковые ударные системы нового поколения
О гонке вооружений в данной сфере говорить пока рано - на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA наход
Как евреи уничтожали евреев во время второй мировой войны
В апреле 1943 г. состоялась Бермудская конференция, участники которой ограничились обменом мнениями по проблеме еврейских беженцев и решили, что вопрос об оказании помощи уцелевшим евреям следует отложить до окончания войны!Во время Второй мировой войны
Свержение режима С.Хусейна. Хусейн саддам - биография Свержение хусейна
14 февраля 2003 года Саддам Хусейн подписал указ о запрете ввоза и производства оружия массового поражения. Однако, для Соединённых Штатов это уже ничего не значило. 18 марта президент США Джордж Буш выступил с обращением к нации. В своём обращении презид