Опасные и безопасные области России. Землетрясения

Надежда Гусева

Кандидат геолого-минералогических наук

Можно ли прогнозировать землетрясения

Предсказание землетрясений - сложная задача. Вертикальные и горизонтальные смещения блоков земной коры служат причиной глубинных землетрясений, которые могут достигать катастрофической силы. Поверхностные малоопасные землетрясения случаются из-за того, что поднимающийся по трещинам в земной коре магматический расплав, по мере продвижения, растягивает эти трещины. Проблема в том, что эти две связанные между собой, но разные причины землетрясений имеют сходные внешние проявления.


Национальный парк Тонгариро, Новая Зеландия

Wikimedia Commons

Тем не менее, команда ученых из Новой Зеландии сумела не только различить следы растяжений земной коры, вызванные магматическими и тектоническими процессами в зоне глубинного разлома Тонгариро, но и вычислить скорость растяжения, возникающего из-за одних и других процессов. Установлено, что в районе разлома Тонгариро магматические процессы играют второстепенную роль, а решающее влияние имеют тектонические процессы. Результаты исследования опубликованы в июльском номере бюллетеня Американского геологического общества и помогают уточнить риски возникновения опасных землетрясений в этом популярном у туристов парке, расположенном в 320 километрах от столицы Новой Зеландии - Веллингтона, а также в аналогичных структурах в других регионах Земли.

Грабены и рифты

Тонгариро - это новозеландский Йеллоустоун. Три «дымящиеся горы» - вулканы Руапеху (2797 метра), Нгаурухое (2291 метр) и Тонгариро (1968 метров), множество более мелких вулканических конусов, гейзеры, озера, окрашенные в голубые и изумрудные цвета, бурные горные реки вместе образуют живописный ландшафт национального парка Тонгариро. Эти ландшафты знакомы многим, потому что послужили естественными декорациями к фильму-трилогии Питера Джексона «Властелин Колец».

Кстати, происхождение этих красот непосредственно связано с особенностями геологического строения региона: с наличием параллельных разломов земной коры, сопровождающихся «проваливанием» расположенного между разломами фрагмента. Такая геологическая структура называется грабен. Геологическая структура, включающая несколько протяженных грабенов, называется рифт.

Рифтовые структуры планетарного масштаба проходят через срединные оси океанов и формируют срединно-океанические хребты. Крупные рифты служат границами тектонических плит, которые, подобно твердым сегментам, составляющим панцирь черепахи, образуют твердую оболочку Земли, ее кору.

Новая Зеландия образовалась там, где Тихоокеанская плита медленно погружается под Австралийскую плиту. Возникающие в таких зонах цепочки островов называют островными дугами. В планетарном масштабе зоны рифтов - это зоны растяжения, а зоны островных дуг - это зоны сжатия земной коры. Однако в региональном масштабе напряжения в земной коре не монотонны, и в каждой крупной зоне сжатия имеются локальные зоны растяжения. В качестве очень грубой аналогии таких локальных зон растяжения можно рассматривать возникновение усталостных трещин в металлических изделиях. Грабен Тонгориро является такой локальной зоной растяжения.

В Новой Зеландии, из-за ее положения в зоне активных геологических процессов планетарного масштаба, каждый год происходит около 20 тысяч землетрясений, примерно 200 из них оказываются сильными.

Магма или тектоника?

Прогноз землетрясений сложен. Разломы часто служат каналами, по которым магма движется с глубоких горизонтов к поверхности. Этот процесс также сопровождается локальным растяжением земной коры. При этом магма не всегда достигает земной поверхности, а в ряде случаев может остановиться на некоторой глубине и там кристаллизоваться, формируя длинное и узкое магматическое тело, именуемое дайка.

На поверхности растяжения земной коры, вызванные внедрением даек (растяжения магматической природы), часто морфологически неотличимы от растяжений, вызванных разрядкой напряжений, возникающих из-за движения блоков земной коры относительно друг друга (растяжений тектонической природы). Но для прогноза землетрясений критически важно различать эти два вида растяжений, потому что землетрясения, связанные с внедрением даек, приповерхностные и не приводят к катастрофическим последствиям, тогда как землетрясений тектонической природы могут наделать много бед.

Было ясно, что в Новозеландской рифтовой системе, и в частности в грабене Тонгориро, имеют место оба типа растяжений, но по поводу того, какой из них преобладает, существовали два взаимно противоречивых мнения.

Угроза катастрофических землетрясений

Исследование, предпринятое командой, включающей представителей геологической службы Новой Зеландии и университетов Окланда и Мэсси, было проведено для того, чтобы найти способ различить магматическое и тектоническое растяжения и уточнить риски возникновения сильных и катастрофических землетрясений в национальном парке Тонгариро.

Ученые использовали совокупность методов, включая методы относительной геохронологии для определения последовательности возникновения нарушений целостности фрагментов земной коры и анализ исторических записей о вулканических извержениях. Ключевым этапом исследования являлось численное моделирование параметров нарушений в земной коре, которые возникли бы в результате внедрения даек, и тщательного сопоставления между модельными и реально наблюдаемыми параметрами.

В результате исследования был сделан вывод, что земная кора в районе грабена Тонгориро растягивается на 5,8–7 мм в год из-за тектонических событий и на 0,4–1,6 мм в год вследствие извержений вулканов и внедрений даек. А это значит, что магматические процессы не являются главной причиной подвижек земной коры и строительные нормы должны учитывать возможность сильных и катастрофических землетрясений. А разработанная методика может быть использована для оценки вклада магматических процессов в движения земной коры в аналогичных структурах в других регионах Земли.

Землетрясение, произошедшее 20 июля и приведшее к разрушениям в Ферганской долине, нельзя назвать неожиданным, - рассказал в интервью газете «Сегодня» заведующий Лабораторией вариации геофизических полей Института сейсмологии Академии наук Узбекистана, доктор физико-математических наук, профессор, академик Кахарбай Абдуллабеков.

Ферганская долина - очень сейсмически активный регион. С юга здесь проходит Южно-Ферганский разлом, с севера - Северо-Ферганский, с востока - Таласо-Ферганский. Исторические данные свидетельствуют, что здесь бывали землетрясения с магнитудой до 7-7,5.

В 17 веке землетрясением был полностью разрушен город Ахсикент недалеко от Намангана. В 1902 году в Андижане произошло землетрясение с магнитудой около 7. В 1926 году сильное землетрясение было в Намангане, в 1982 году - в Чимионе, в 1984-м - Папское, в 1992 году - Избосканское.

Отчего происходят землетрясения? Существует два взгляда. Первый и наиболее популярный заключается в том, что земной шар разделен на гигантские плиты, в результате взаимодействия которых происходят землетрясения, образуются горы. Это мобилистическая теория.

По этой теории Индийская плита с юга надвигается на Евро-Азиатскую, из-за чего образованы горы Тянь-Шань, Памир, Гиндукуш, Гималаи. Из палеомагнитных данных, данных исторической геологии известно, что Индийская плита действительно за последние 20-25 миллионов лет надвинулась на север примерно на 1000-1300 км.

Другой подход - фиксистский, по которому за счет внутренних процессов в ядре и мантии Земли, радиоактивного распада, дифференциации пород, фазовых переходов и прочего выделяется дополнительная энергия, которая влияет на горообразовательный процесс.

Как уменьшить ущерб от землетрясений?

Есть два пути. Первый - это учитывать, где и с какой силой могут произойти землетрясения. Для этого составляется карта общего сейсмического районирования. Она является составной частью основного документа для строительства - строительных норм и правил (СНиП). Зная, где и с какой силой возможны землетрясения, строители заранее рассчитывают параметры строительства.

Второй - прогнозирование землетрясений. Это довольно острая проблема, которой уже давно занимаются многие страны мира. На сегодняшний день известно, что существуют надежные физически обоснованные предвестники землетрясений. Они бывают сейсмологические, гидрогеосейсмологические, деформометрические и другие. Каждая группа предвестников, в свою очередь, геофизически разделяется на магнитные, электрические, электромагнитные и т.д.

Ученым сегодня известна зависимость между параметрами землетрясения и его предвестниками. Чем землетрясение сильнее, тем дольше времени оно готовится и тем большую площадь оно охватывает. Исходя из этого, и можно прогнозировать землетрясение.

Предвестники разделяются на три группы - долгосрочные (проявляются за десятки лет), среднесрочные (от нескольких месяцев до двух-трех лет) и краткосрочные (от нескольких часов до одного месяца). Они экспериментально обнаружены, доказаны, есть конкретные примеры прогнозирования. В чем же тогда проблема? Почему, если все это изучено, прогнозирование до сих пор широко не распространено?

Дело в том, что до настоящего времени в мире отсутствуют службы прогноза землетрясения. Чтобы организовать службу прогноза, нужно оптимально расставить сеть прогностических станций, исходя из параметров предвестника. Для магнитуды 5, например, расстояние между станциями должно быть 30-40 км, для магнитуды 6 - больше. Верно, это недешево, нужна круглосуточная работа этих станций и центра обработки полученных данных.

Подобие такой службы в настоящее время есть в Китае. Есть государственное сейсмологическое бюро в ранге министерства. По территории Китая расставлена очень широкая сеть станций, есть центр анализа прогнозов, который пытается прогнозировать землетрясения.

Что касается Узбекистана, то мы с 1970-х годов активно занимаемся предвестниками землетрясений, пытаемся их прогнозировать. С 1976 года у нас организована прогнозная комиссия. По всей территории республики имеется сеть сейсмо-прогностических станций, с которых информация поступает в наш институт, где обрабатывается. Прогнозная комиссия заседает раз в неделю и выносит решение, которое в виде справки передается в МЧС и Академию наук.

Удачные и неудачные прогнозы

В практике института были удачные прогнозы. Так, мы сумели спрогнозировать второе Газлийское землетрясение 1976 года, затем в 1978 году было очень четко предсказано Алайское землетрясение, случившееся в 120 км от Андижана. Последнее сообщение о нем было дано за 6 часов до толчка. Магнитуда составила 6,8. Также были предсказаны Чимионское и Папское в 1982 и 1984 годах.

Папское землетрясение произошло 18 февраля, сейсмическая активизация наблюдалась с начала года. Мы заметили учащение мелких землетрясений и быстро расставили сеть. За два дня до основного толчка количество форшоков резко возросло - с 5-6 в день до 100-150. Мы объявили об этом местным властям, и люди в ту ночь, несмотря на холод, ожидали его. Землетрясение произошло утром.

Но были и неудачные прогнозы. Мы не смогли предсказать Таваксайское землетрясение 1977 года с магнитудой 5,2. Затем Назарбекское в декабре 1980 года в 15 км к западу от Ташкента с магнитудой 5,5, хотя за три-четыре месяца были обнаружены очень четкие среднесрочные предвестники.

Что касается последнего землетрясения в Ферганской долине, то там явные краткосрочные и среднесрочные предвестники отсутствовали. На заседании прогнозной комиссии отмечались еле заметные слабо выраженные аномалии, на основании которых мы сделали вывод о возможном ощутимом (4,5 магнитуд) землетрясении вдоль Южно-Ферганского разлома. Но оно оказалось сильным.

В настоящее время в эпицентральном районе находится экспедиция Института сейсмологии во главе с директором. Там организуются комплексные сейсмопрогностические наблюдения, будет изучаться характер землетрясения и дальнейшее поведение очага. Сейчас мелкие афтершоки продолжаются. Сказать однозначно, как очаг себя поведет, заранее трудно, т.к. все землетрясения сильно отличаются друг от друга.

Один из важных результатов работы нашего института - это разработка модели подготовки землетрясения. Таких моделей много, однако они построены на основании экспериментов в лабораторных условиях. Они могут объяснить процессы и появление предвестников, но без временного фактора. Наша модель отличается тем, что мы можем сказать, с какой магнитудой готовится землетрясение и сколько времени. Это очень существенный результат.

У Института сейсмологии много направлений деятельности. Среди них - изучение техногенной сейсмичности (влияние разработки и эксплуатации газонефтяных месторождений, водохранилищ и т.п.), оценка сейсмического риска (прогнозирование того, что будет со зданиями, людьми, коммуникациями, рельефом в результате землетрясения), и другие.

Есть такое понятие как сейсмическая уязвимость, которая у разных стран разная. Все мы знаем, что землетрясение одинаковой магнитуды в Японии, к примеру, приведет к меньшим жертвам по сравнению с другими странами, т.к. народ заранее подготовлен и обучен, здания и сооружения сейсмостойкие. К уязвимым странам можно отнести Иран, Пакистан.

В Узбекистане к уязвимым местам можно отнести старые постройки, дома из глины, глинобитного кирпича, частные дома, построенные без соблюдения правил и специального контроля. Считаю, что в этой сфере нужен жесткий контроль, люди должны четко представлять, чем может грозить несоблюдение правил.

Возможно, мы должны не только готовить население, но и, когда нужно, заставлять соблюдать правила. Нужен жесткий контроль со стороны хокимиятов, комитета по архитектуре и строительству. В стране есть оползневая служба, которая отслеживает и переселяет жителей, когда есть опасность оползня. Видимо, здесь нужен такой же подход.

К сожалению, человеческая натура такова, что все очень быстро забывается. Все знают, что мы живем в сейсмоактивном регионе, что землетрясение может произойти в любой момент, однако очень сильна беспечность.

Как себя вести при землетрясении?

Самое главное правило - не паниковать. Стоит помнить, что землетрясения были и будут, поэтому современные здания построены с учетом сейсмичности.

В квартире желательно правильно выбирать место для кровати, вся мебель должна закрепляться, чтобы не упала, хотя этого практически никто не делает.

Во время землетрясения нужно быть подальше от стекол (они могут разбиться). Лучше всего стоять в дверных проемах. Пытаться выбежать на улицу, особенно в высотных зданиях, опасно. Можно застрять в лифте, в любой момент может отключиться электричество. Лестницы также представляют опасность.

Если, скажем, в школах или детсадах, бежать некуда или опасно, можно спрятаться под парту, чтобы уберечься от падающей штукатурки и других предметов, которые могут поранить ребенка.

23 июля в Иране произошло четвертое за сутки землетрясение, а число пострадавших достигло 287. Днем ранее подземные толчки магнитудой 5,2 зарегистрировали в Чили. В целом за 7 месяцев 2018 года на Земле произошло 6881 землетрясение, забравшее 227 человеческих жизней. Но почему ученые так и не научились предсказывать эти катаклизмы? Разбирался Realist.

Как определяют сейсмически опасные зоны

Литосферные плиты находятся в постоянном движении. Сталкиваясь и растягиваясь, они увеличивают напряжение в горных породах, что приводит к их быстрому разрыву — землетрясению. Очаг(гипоцентр) землетрясения находится в недрах земли, а эпицентр является его проекцией на поверхности.

Силу землетрясений измеряют по шкале разрушения в баллах(от 1 до 12) , а также магнитудой — безразмерной величиной, которая отражает высвобождаемую энергию упругих колебаний(от 1 до 9,5 по шкале Рихтера).

Проще всего науке дается выявление сейсмически опасных зон и долгосрочное прогнозирование землетрясений на ближайшие 10−15 лет. Для этого исследователи анализируют цикличность активизации сейсмотектонического процесса: нет оснований полагать, что в ближайшие несколько сотен лет Земля начнет вести себя по-другому, чем в аналогичный промежуток времени в прошлом.

Можно ли предсказать землетрясения

Нет, по крайней мере с точностью, достаточной для того, чтобы можно было планировать программы эвакуации населения. И хотя большинство землетрясений происходят в предсказуемых местах вдоль хорошо известных геологических разломов, надежность краткосрочных прогнозов оставляет желать лучшего.

«У нас есть модели, которые показывают, что в Южной Калифорнии риск землетрясений магнитудой 7,5 и выше в ближайшие 30 лет составляет 38%. Если эти модели использовать для расчета вероятности землетрясений на ближайшую неделю, вероятность упадет примерно до 0,02%», — комментирует Томас Джордан, директор Центра землетрясений в Южной Калифорнии.

Такой риск довольно мал, но все же не равен нулю, а поскольку по территории штата Калифорния проходит трансформный разлом Сан-Андреас, в местных школах регулярно проводят учения по подготовке к большому землетрясению.

Почему большие землетрясения так трудно спрогнозировать

Надежные предсказания требуют определения сигналов, которые указывали бы на приближающееся большое землетрясение. Такие сигналы должны быть характерными только для крупных землетрясений: слабые и умеренные толчки магнитудой до 5 могут привести к раскачиванию висячих предметов, дребезжанию стекол или осыпанию штукатурки, что не требует эвакуации населения. Впрочем, в 5−10% случаев такие толчки оказываются форшоками, которые предшествуют более сильным землетрясениям. Согласно статистике, форшоковая активность характерна для 40% средних и 70% больших землетрясений.

Сейсмологи до сих пор не смогли выделить специфические события, которые регулярно происходят только перед большими землетрясениями.

Сегодня изучен широкий диапазон потенциальных предсказателей землетрясения — от увеличения концентрации радона в воздухе и необычного поведения животных до деформации земной поверхности и изменения уровня грунтовых вод. Но эти аномалии являются общими: каждая из них может возникнуть и перед самыми слабыми толчками.

Почему людей не эвакуируют при малейшем риске большого землетрясения

Основная причина — большая вероятность ложной тревоги. Так, в 1975 году в Хайчэне(Китай) сейсмологи зафиксировали участившиеся слабые землетрясения и объявили всеобщую тревогу 4 февраля в 2 часа дня. Спустя 5 часов 36 минут в городе произошло землетрясение силой более 7 баллов, многие здания оказались разрушенными, но благодаря своевременной эвакуации катаклизм обошелся практически без жертв.

К сожалению, в будущем столь удачные прогнозы не удалось повторить: сейсмологи спрогнозировали несколько больших землетрясений, которые не состоялись, а остановка предприятий и эвакуация населения повлекли за собой лишь экономические потери.

Как работают системы раннего оповещения о землетрясениях

Лучшей системой раннего оповещения о землетрясениях сегодня обладает Япония. Страна буквально« усеяна» станциями, которые с помощью чувствительной аппаратуры регистрируют сейсмические волны, выявляют потенциальные форшоки и передают информацию в Метеорологическое агентство, которое, в свою очередь, незамедлительно передает ее на ТВ, в интернет и на мобильные телефоны граждан. Так, к моменту прихода второй сейсмической волны население уже предупреждено об эпицентре землетрясения, его магнитуде и времени приближения второй волны.

Несмотря на технологические достижения, даже японская система оповещения срабатывает после того, как стихийное бедствие произошло. Но пока исследователи досконально не изучат физические процессы, связанные с землетрясениями, рассчитывать на большее не приходится. Жителям сейсмически активных зон остается надеяться, что сейсмометры станут более чувствительными, а спутниковое наблюдение поможет ускорить время прогноза.

Всем привет! Приветствую вас на страницах своего блога о безопасности. Меня зовут Владимир Раичев и сегодня я решил рассказать вам, какие существую предвестники землетрясений. Почему, интересно, жертвами землетрясений становится так много людей? Неужели их нельзя прогнозировать?

Недавно такой вопрос мне задали мои ученики. Вопрос, конечно, не праздный, мне самому он очень интересен. В учебнике по ОБЖ я прочитал, что существует несколько видов прогнозирования землетрясений:

  1. Долгосрочный. Простая статистика, если проанализировать землетрясения на сейсмических поясах, то можно выявить некую закономерность возникновения землетрясений. С погрешностью в несколько сотен лет, но разве это нам сильно поможет?
  2. Среднесрочный. Изучается состав почвы (при землетрясениях происходит его изменение) и с погрешностью в несколько десятков лет можно предположить возникновение землетрясение. Стало легче? Думаю, что не очень.
  3. Краткосрочный. Данный вид прогнозов предполагает отслеживание сейсмической активности и позволяет уловить начинающиеся колебания земной поверхности. Как думаете, поможет нам такой прогноз?

Однако разработка этой проблемы чрезвычайно сложна. Пожалуй, ни одна наука не испытывает таких трудностей, как сейсмология. Если, прогнозируя погоду, метеорологи могут непосредственно наблюдать за состоянием воздушных масс: температурой, влажностью, скоростью ветра, то недра Земли доступны прямым наблюдениям только через буровые скважины.

Самые глубокие скважины не достигают и 10 километров, в то время как очаги землетрясений бывают на глубинах в 700 километров. Процессы же, которые связаны с возникновением землетрясений, могут захватывать еще большие глубины.

Изменение положения береговой линии как признак надвигающегося землетрясения

Тем не менее, попытки выявления факторов, предшествующих землетрясениям, хотя и медленно, но все же приводят к положительным результатам. Казалось бы, изменение положения береговой черты относительно уровня океана может служить предвестником землетрясений.

Однако во многих странах при таких же условиях землетрясения не наблюдались, и наоборот - при стабильном положении береговой черты землетрясения происходили. Объясняется это, по-видимому, различием геологических структур Земли.

Следовательно, этот признак не может быть универсальным для прогнозов землетрясений. Но следует оказать, что изменение высоты береговой линии явилось толчком к постановке специальных наблюдений за деформациями земной коры при помощи геодезических съемок и специальных приборов.

Изменение электропроводности горных пород — еще один индикатор зарождающегося землетрясения

В качестве предвестников землетрясений можно использовать изменения скоростей распространения упругих колебаний, электрических сопротивлений и магнитных свойств земной коры. Так, в районах Средней Азии при изучении электропроводности горных пород было обнаружено, что некоторым землетрясениям предшествовало изменение электропроводности.

При сильных землетрясениях из недр Земли высвобождается огромная энергия. Трудно допустить, что процесс накопления громадной энергии до начала разрыва земной коры, то есть землетрясения, протекает неуловимо. Вероятно, со временем при помощи более совершенной геофизической аппаратуры наблюдения за этими процессами дадут возможность точно предсказывать землетрясения.

Развитие современной техники, позволяющее уже сейчас применять лазерные лучи для более точных геодезических измерений, электронно-вычислительная техника для обработки информации сейсмологических наблюдений, современные сверхчувствительные приборы открывают перед сейсмологией большие перспективы.

Высвобождение радона и поведение животных- предвестники приближающихся толчков

Ученым удалось обнаружить, что перед подземными толчками в земной коре изменяется содержание газа радона. Происходит это, по-видимому, из-за сжатия земных пород, в результате чего газ вытесняется с больших глубин. Это явление наблюдалось при повторных сейсмических толчках.

Сжатием земных пород, очевидно, можно объяснить и другое явление, которое в отличие от перечисленных породило немало легенд. В Японии наблюдалось, что маленькие рыбы определенной разновидности перед землетрясением перемещаются к поверхности океана.

Предполагают, что животные в некоторых случаях предчувствуют приближение землетрясений. Однако использовать эти явления в качестве предвестников практически трудно, ибо сопоставление поведения животных в обычных ситуациях и перед землетрясением начинается тогда, когда оно уже произошло. Это и порождает иногда различные необоснованные суждения.

Работы, связанные с поисками предвестников землетрясений, ведутся в самых различных направлениях. Было замечено, что создание крупных водохранилищ при гидроэлектростанциях в некоторых сейсмоактивных зонах США, Испании способствует увеличению землетрясений.

Специально созданная международная комиссия по изучению влияния крупных водохранилищ на сейсмическую активность предположила, что проникновение воды в горные породы уменьшает их прочность, что может послужить причиной землетрясения.

Опыт показал, что работы по поискам предвестников землетрясений требуют более тесного сотрудничества ученых. Разработка проблемы предсказания землетрясений вступила в новую фазу более фундаментальных исследований на базе современных технических средств, и есть все основания надеяться, что она будет решена.

Рекомендую вам почитать мои статьи о землетрясениях, например, о мессинском землетрясении в Италии , или ТОП самых сильных землетрясений за всю историю человечества .

Как видите, друзья, предсказать землетрясение — это очень сложная задача, которую не всегда получается выполнить. А я на этом с вами прощаюсь. Не забудьте подписаться на новости блога, чтобы в числе первых узнавать о выходе новых статей. Поделитесь статьей с друзьями в социальных сетях, вам мелочь, а мне приятно. Желаю вам всего доброго, пока-пока.

Доктор геолого-минералогических наук Николай Короновский, кандидат геолого-минералогических наук Альфред Наймарк.

Землетрясение 12 января 2010 года, Порт-о-Пренс, столица Республики Гаити. Разрушенные президентский дворец и городские кварталы. Общее число погибших - 220 тысяч.

Наука и жизнь // Иллюстрации

Сейсмическая опасность и прогноз землетрясений в сопоставлении с прогнозами климата и погоды (по В. И. Уломову, http://seismos-u.ifz.ru).

Землетрясение в г. Ван (Турция), 2011 год.

Рис. 1. Предвестниковые и постсейсмические аномалии на графиках агрегированных сигналов, Китай (по А. Любушину, 2007 год).

Рис. 2. Аномалии перед землетрясениями в Японии 25 сентября 2003 года и 11 марта 2011-го, ограничены вертикальными линиями (по А. Любушину, 2011 год).

Не проходит и года, чтобы где-то не случилось катастрофическое землетрясение с тотальными разрушениями и человеческими жертвами, количество которых может достигать десятков и сотен тысяч. А тут ещё цунами - аномально высокие волны, возникающие в океанах после землетрясений и смывающие на низких берегах посёлки и города вместе с жителями. Эти катастрофы всегда неожиданны, пугают их внезапность и непредсказуемость. Неужели современная наука не в состоянии предвидеть подобные катаклизмы? Ведь предсказывают же ураганы, торнадо, изменения погоды, наводнения, магнитные бури, даже извержения вулканов, а с землетрясениями - полный провал. И общество зачастую считает, что виноваты учёные. Так, в Италии попали под суд шестеро геофизиков и сейсмологов, которые в 2009 году не смогли предсказать землетрясение в Аквиле, унёсшее жизни 300 человек.

Казалось бы, имеется много разных инструментальных методов, приборов, фиксирующих малейшие деформации земной коры. А прогноз землетрясения не удаётся. Так в чём же дело? Чтобы ответить на этот вопрос, рассмотрим сначала, что же представляет собой землетрясение.

Самая верхняя оболочка Земли - литосфера, состоящая из твёрдой земной коры мощностью от 5-10 км в океанах и до 70 км под горными массивами, - подразделяется на ряд плит, называемых литосферными. Ниже располагается также твёрдая верхняя мантия, точнее, её верхняя часть. Эти геосферы состоят из различных горных пород, обладающих высокой твёрдостью. Но в толще верхней мантии на разных глубинах размещается слой, названный астеносферным (от греческого астенос - слабый), имеющий меньшую вязкость по сравнению с выше- и нижележащими породами мантии. Предполагается, что астеносфера является той «смазкой», по которой могут перемещаться литосферные плиты и части верхней мантии.

Во время движения пли`ты в одних местах сталкиваются, образуя огромные горно-складчатые цепи, в других, наоборот, раскалываются с образованием океанов, кора которых тяжелее коры континентов и способна погружаться под них. Эти взаимодействия плит вызывают колоссальные напряжения в горных породах, сжимая или, наоборот, растягивая их. Когда напряжения превышают предел прочности горных пород, происходит их очень быстрое, практически мгновенное, смещение, разрыв. Момент этого смещения и представляет собой землетрясение. Если мы хотим его предсказать, то должны дать прогноз места, времени и возможной силы.

Любое землетрясение представляет собой процесс, идущий с некоторой конечной скоростью, с образованием и обновлением множества разномасштабных разрывов, вспарыванием каждого из них с высвобождением и перераспределением энергии. При этом надо чётко понимать, что горные породы представляют собой не сплошной однородный массив. В нём есть трещины, структурно ослабленные зоны, которые значительно понижают его суммарную прочность.

Скорость распространения разрыва или разрывов достигает нескольких километров в секунду, процесс разрушения охватывает некоторый объём пород - очаг землетрясения. Его центр называется гипоцентром, а проекция на поверхность Земли - эпицентром землетрясения. Гипоцентры располагаются на разных глубинах. Наиболее глубокие - до 700 км, но чаще гораздо меньше.

Интенсивность, или сила, землетрясений, которая так важна для прогнозирования, характеризуется в баллах (мера разрушения) по шкале MSK-64: от 1 до 12, а также магнитудой М - безразмерной величиной, предложенной профессором Калифорнийского технологического института Ч. Ф. Рихтером, которая отражает количество высвобожденной общей энергии упругих колебаний.

Что такое прогноз?

Чтобы оценить возможность и практическую пользу прогноза землетрясений, нужно чётко определить, каким требованиям он должен отвечать. Это не угадывание, не тривиальное предсказание заведомо регулярных событий. Прогноз определяется как научно обоснованное суждение о месте, времени и состоянии явления, закономерности возникновения, распространения и изменения которого неизвестны или неясны.

Принципиальная прогнозируемость сейсмических катастроф долгие годы никаких сомнений не вызывала. Вера в безграничный предсказательный потенциал науки подкреплялась, казалось бы, вполне убедительными доводами. Сейсмические события с выделением огромной энергии не могут происходить в недрах Земли без подготовки. Она должна включать определённые перестройки структуры и геофизических полей, тем большие, чем интенсивней ожидаемое землетрясение. Проявления таких перестроек - аномальные изменения тех или иных параметров геологической среды - выявляются методами геолого-геофизического и геодезического мониторинга. Задача, следовательно, состояла в том, чтобы, располагая необходимыми методиками и аппаратурой, вовремя зафиксировать возникновение и развитие таких аномалий.

Однако оказалось, что даже в районах, где ведутся непрерывные тщательные наблюдения - в Калифорнии (США), Японии, - сильнейшие землетрясения всякий раз случаются неожиданно. Получить надёжный и точный прогноз эмпирическим путём не удаётся. Причину этого видели в недостаточной изученности механизма исследуемого процесса.

Таким образом, сейсмический процесс априори считался в принципе прогнозируемым, если механизмы, фактические данные и необходимые методики, неясные или недостаточные сегодня, будут поняты, пополнены и усовершенствованы в будущем. Каких-либо принципиально непреодолимых препятствий прогнозированию нет. Унаследованные от классической науки постулаты безграничных возможностей научного познания, предсказания интересующих нас процессов были до относительно недавнего времени исходными принципами любого естественно-научного исследования. А как эта проблема понимается сейчас?

Достаточно очевидно, что даже без специальных исследований можно уверенно «прогнозировать», например, в высокосейсмичной зоне перехода от азиатского континента к Тихому океану в ближайшие 1000 лет сильное землетрясение. Столь же «обоснованно» можно утверждать, что в районе острова Итуруп Курильской гряды завтра в 14:00 по московскому времени произойдёт землетрясение с магнитудой 5,5. Но цена таким прогнозам - ломаный грош. Первый из прогнозов вполне достоверен, но никому не нужен ввиду его крайне малой точности; второй достаточно точен, но также бесполезен, ибо его достоверность близка к нулю.

Из этого ясно, что: а) при любом определённом уровне изученности повышение достоверности прогноза влечёт за собой снижение его точности, и наоборот; б) при недостаточной точности прогноза каких-либо двух параметров (например, места и магнитуды землетрясения) даже точное предсказание третьего параметра (времени) теряет практический смысл.

Таким образом, главная задача и главная трудность прогнозирования землетрясения в том, чтобы предсказания его места, времени и энергии или интенсивности удовлетворяли бы требованиям практики одновременно и по точности, и по достоверности. Однако сами эти требования различны в зависимости не только от достигнутого уровня знаний о землетрясениях, но и от конкретных целей прогнозирования, которым отвечают разные типы прогноза. Принято выделять:

Сейсморайонирование (оценки сейсмичности на десятилетия - столетия;

Прогнозы: долгосрочный (на годы - десятилетия), среднесрочный (на месяцы - годы), краткосрочный (по времени 2-3 суток - часы, по месту 30-50 км) и иногда оперативный (на часы - минуты).

Особенно актуален краткосрочный прогноз: именно он - основание для конкретных предупреждений о предстоящей катастрофе и для неотложных действий по уменьшению ущерба от неё. Цена ошибок здесь очень велика. А ошибки эти бывают двух типов:

1. «Ложная тревога», когда после принятия всех мер для минимизации количества людских жертв и материальных потерь предсказанное сильное землетрясение не происходит.

2. «Пропуск цели», когда состоявшееся землетрясение не было предсказано. Такие ошибки чрезвычайно часты: практически все катастрофические землетрясения оказываются неожиданными.

В первом случае ущерб от нарушения ритма жизни и работы тысяч людей может быть очень большим, во втором - последствия чреваты не только материальными потерями, но и человеческими жертвами. В обоих случаях моральная ответственность сейсмологов за неверный прогноз очень велика. Это заставляет их быть предельно осторожными при выдаче (или невыдаче) властям официальных предупреждений о предстоящей опасности. В свою очередь власти, осознавая огромные трудности и тяжёлые последствия остановки функционирования плотно заселённого района или крупного города хотя бы на день-другой, отнюдь не спешат следовать рекомендациям многочисленных «самодеятельных» неофициальных прогнозистов, декларирующих 90%-ную и даже 100%-ную достоверность своих предсказаний.

Дорогая цена незнания

Между тем непредсказуемость геокатастроф обходится человечеству очень дорого. Как отмечает, например, российский сейсмолог А. Д. Завьялов, с 1965 по 1999 год землетрясения составляли 13% от общего числа природных катастроф в мире. С 1900 по 1999 год произошло 2000 землетрясений с магнитудой более 7. В 65 из них М была выше 8. Людские потери от землетрясений в XX веке составили 1,4 млн человек. Из них на последние 30 лет, когда количество жертв стали подсчитывать более точно, пришлось 987 тыс. человек, то есть 32,9 тыс. человек в год. Среди всех природных катастроф землетрясения стоят на третьем месте по количеству смертных случаев (17% от общего числа погибших). В России, на 25% её площади, где расположены около 3000 городов и посёлков, 100 крупных гидро- и тепловых электростанций, пять АЭС, возможны сейсмические сотрясения с интенсивностью 7 и более. Сильнейшие землетрясения в ХХ столетии происходили на Камчатке (4 ноября 1952 года, М = 9,0), на Алеутских островах (9 марта 1957 года, М = 9,1), в Чили (22 мая 1960 года, М = 9,5), на Аляске (28 марта 1964 года, М = 9,2).

Впечатляет перечень сильнейших землетрясений в недавние годы.

2004 год, 26 декабря. Суматро-Андаманское землетрясение, М = 9,3. Сильнейший афтершок (повторный толчок) с М = 7,5 возник спустя 3 ч 22 мин после главного удара. За первые сутки после него зарегистрировано около 220 новых землетрясений с М > 4,6. Цунами обрушилось на побережья Шри-Ланки, Индии, Индонезии, Таиланда, Малайзии; погибли 230 тыс. человек. Спустя три месяца возник афтершок с М = 8,6.

2005 год, 28 марта. Остров Ниас, в трёх километрах от Суматры, землетрясение с М = 8,2. Погибли 1300 человек.

2005 год, 8 октября. Пакистан, землетрясение с М = 7,6; погибли 73 тыс. человек, более трёх миллионов остались без крова.

2006 год, 27 мая. Остров Ява, землетрясение с М = 6,2; погибли 6618 человек, 647 тыс. остались без крова.

2008 год, 12 мая. Провинция Сычуань, Китай, в 92 км от г. Ченду, землетрясение М = 7,9; погибли 87 тыс. человек, 370 тыс. ранены, 5 миллионов остались без крова.

2009 год, 6 апреля. Италия, землетрясение с М = 5,8 близ исторического г. Аквила; жертвами стали 300 человек, ранены 1,5 тыс., более 50 тыс. остались без крова.

2010 год, 12 января. Остров Гаити, в нескольких милях от побережья два землетрясения с М = 7,0 и 5,9 в течение нескольких минут. Погибли около 220 тыс. человек.

2011 год, 11 марта. Япония, два землетрясения: М = 9,0, эпицентр в 373 км к северо-востоку от Токио; М = 7,1, эпицентр в 505 км к северо-востоку от Токио. Катастрофическое цунами, погибли более 13 тыс. человек, 15,5 тыс. пропали без вести, разрушение АЭС. Спустя 30 мин после главного толчка - афтершок с М = 7,9, затем ещё один толчок с М = 7,7. За первые сутки после землетрясения зарегистрировано около 160 толчков с магнитудами от 4,6 до 7,1, из них 22 толчка с М > 6. За вторые сутки количество зарегистрированных афтершоков с М > 4,6 составило около 130 (из них 7 афтершоков с М > 6,0). За третьи сутки это число снизилось до 86 (в том числе один толчок с М = 6,0). На 28-е сутки произошло землетрясение с М = 7,1. К 12 апреля было зарегистрировано 940 афтершоков с М > 4,6. Эпицентры повторных толчков покрыли область протяжённостью около 650 км, в поперечнике около 350 км.

Все, без исключений, перечисленные события оказывались неожиданными или «предсказанными» не настолько определённо и точно, чтобы можно было принять конкретные меры безопасности. Между тем утверждения о возможности и даже многократных реализациях надёжного краткосрочного прогноза конкретных землетрясений нередки как на страницах научных изданий, так и в интернете.

История двух прогнозов

В районе города Хайчэн, провинция Ляонин (Китай), в начале 70-х годов прошлого столетия неоднократно отмечались признаки возможного сильного землетрясения: изменения наклонов земной поверхности, геомагнитного поля, электросопротивления грунтов, уровня воды в колодцах, поведения животных. В январе 1975 года было объявлено о предстоящей опасности. К началу февраля внезапно поднялся уровень воды в колодцах, сильно возросло число слабых землетрясений. К вечеру 3 февраля власти были уведомлены сейсмологами о близкой катастрофе. На следующее утро произошло землетрясение с магнитудой 4,7. В 14:00 было объявлено о вероятности ещё более сильного удара. Жители покинули дома, были приняты меры безопасности. В 19:36 мощный толчок (М = 7,3) вызвал обширные разрушения, но жертв оказалось немного.

Это единственный пример удивительно точного по времени, месту и (приблизительно) по интенсивности краткосрочного прогноза разрушительного землетрясения. Однако иные, очень немногие оправдавшиеся прогнозы были недостаточно определёнными. Главное же - число как непредсказанных реальных событий, так и ложных тревог оставалось чрезвычайно большим. Это означало, что надёжного алгоритма устойчивого и точного предсказания сейсмокатастроф нет, а хайчэнский прогноз - скорее всего, лишь необычайно удачное стечение обстоятельств. Так, чуть больше года спустя, в июле 1976-го, в 200-300 км к востоку от Пекина произошло землетрясение с M = 7,9. Был полностью разрушен г. Таншань, погибли 250 тыс. человек. Определённых предвестников катастрофы не наблюдалось, тревога не объявлялась.

После этого, а также после неудачи многолетнего эксперимента по прогнозу землетрясения в Паркфилде (США, штат Калифорния) в середине 80-х годов прошлого века возобладало скептическое отношение к перспективам решения проблемы. Это нашло отражение в большинстве докладов на совещании «Оценка проектов по прогнозу землетрясений» в Лондоне (1996 г.), проведённом Королевским астрономическим обществом и Объединённой ассоциацией геофизики, а также в дискуссии сейсмологов разных стран на страницах журнала «Nature» (февраль - апрель 1999 года).

Значительно позже Таншаньского землетрясения российский учёный А. А. Любушин, анализируя данные геофизического мониторинга тех лет, смог выявить аномалию, предшествовавшую этому событию (на верхнем графике рис. 1 оно выделено правой вертикальной линией). Соответствующая этой катастрофе аномалия присутствует и на нижнем, модифицированном, графике сигнала. На обоих графиках имеются и другие аномалии, ненамного уступающие упомянутой, однако не совпавшие с какими-либо землетрясениями. Но никакого предвестника Хайчэнского землетрясения (левая вертикальная линия) первоначально найдено не было; аномалия выявилась только после модификации графика (рис. 1, внизу). Таким образом, хотя выявить предвестники Таншаньского и в меньшей степени Хайчэнского землетрясений в данном случае апостериори удалось, надёжного прогнозного выделения признаков будущих разрушительных событий найдено не было.

В наши дни, анализируя результаты длительных, с 1997 года, непрерывных записей микросейсмического фона на Японских островах, А. Любушин обнаружил, что ещё за полгода до сильного землетрясения на о. Хоккайдо (М = 8,3; 25 сентября 2003 года) произошло уменьшение среднего по времени значения сигнала-предвестника, после чего сигнал не вернулся к прежнему уровню и стабилизировался на низких значениях. Это с середины 2002 года сопровождалось увеличением синхронизации значений данного признака по разным станциям. Такая синхронизация с позиций теории катастроф - признак приближающегося перехода исследуемой системы в качественно новое состояние, в данном случае - указание на предстоящее бедствие. Эти и последующие результаты обработки имевшихся данных привели к предположению, что событие на о. Хоккайдо, хотя и сильное, всего лишь форшок ещё более мощной предстоящей катастрофы. Так, на рис. 3 видны две аномалии поведения сигнала-предвестника - острые минимумы в 2002 и 2009 годах. Поскольку после первого из них последовало землетрясение 25 сентября 2003 года, то второй минимум мог быть предвестником ещё более мощного события с М = 8,5-9. Его место указывалось как «Японские о-ва»; более точно оно было определено ретроспективно, постфактум. Время события прогнозировалось вначале (апрель 2010 года) на июль 2010 года, затем - от июля 2010 года на неопределённый период, что исключало возможность объявления тревоги. Произошло оно 11 марта 2011 года, причём, судя по рис. 2, его можно было ожидать и раньше, и позже.

Данный прогноз относится к среднесрочным, которые бывали успешными и прежде. Краткосрочные же удачные прогнозы всегда единичны: найти какой-либо устойчиво эффективный набор предвестников не удавалось. И сейчас нет способов заранее узнать, в каких ситуациях будут эффективны те же предвестники, что и в прогнозе А. Любушина.

Уроки прошлого, сомнения и надежды на будущее

Каково же современное состояние проблемы краткосрочного сейсмопрогнозирования? Разброс мнений очень велик.

В последние 50 лет попытки прогноза места и времени сильных землетрясений за несколько суток были безуспешны. Выделить предвестники конкретных землетрясений не удалось. Локальные возмущения различных параметров среды не могут быть предвестниками отдельных землетрясений. Не исключено, что краткосрочный прогноз с нужной точностью вообще нереален.

В сентябре 2012 года, в ходе 33-й Генеральной ассамблеи Европейской сейсмологической комиссии (Москва), генеральный секретарь Международной ассоциации сейсмологии и физики недр Земли П. Сухадолк признал, что в ближайшее время прорывных решений в сейсмологии не ожидается. Отмечалось, что ни один из более 600 известных предвестников и никакой их набор не гарантируют предсказания землетрясений, которые бывают и без предвестников. Уверенно указать место, время, мощность катаклизма не удаётся. Надежды возлагаются лишь на предсказания там, где сильные землетрясения происходят с некоторой периодичностью.

Так возможно ли в будущем повысить одновременно точность и достоверность прогноза? Прежде чем искать ответ, следует понять: а почему, собственно, землетрясения должны быть прогнозируемы? Традиционно полагают, что любое явление прогнозируемо, если достаточно полно, подробно и точно изучены уже происшедшие подобные события, и прогнозирование можно строить по аналогии. Но будущие события происходят в условиях, не тождественных прежним, и поэтому непременно в чём-то от них отличаются. Такой подход может быть эффективен, если, как подразумевается, отличия в условиях зарождения и развития исследуемого процесса в разных местах, в разное время невелики и меняют его результат пропорционально величине таких отличий, то есть также незначительно. При неоднократности, случайности и разнозначности подобных отклонений они существенно взаимокомпенсируются, позволяя получать в итоге не абсолютно точный, но статистически приемлемый прогноз. Однако возможность такой предсказуемости в конце XX века была поставлена под сомнение.

Маятник и песчаная куча

Известно, что поведение множества природных систем достаточно удовлетворительно описывается нелинейными дифференциальными уравнениями. Но их решения в некоторой критической точке эволюции становятся неустойчивыми, неоднозначными - теоретическая траектория развития разветвляется. Та или иная из ветвей непредсказуемо реализуется под действием одной из множества малых случайных флуктуаций, всегда происходящих в любой системе. Предсказать выбор можно было бы лишь при точном знании начальных условий. Но к их малейшим изменениям нелинейные системы весьма чувствительны. Из-за этого выбор пути последовательно всего в двух-трёх точках ветвления (бифуркации) приводит к тому, что поведение решений вполне детерминистических уравнений оказывается хаотическим. Это выражается - даже при плавном увеличении значений какого-либо параметра, например давления, - в самоорганизации коллективных нерегулярных, скачкообразно перестраивающихся перемещений и деформаций элементов системы и их агрегаций. Такой режим, парадоксально сочетающий детерминированность и хаотичность и определяемый как детерминистский хаос, отличный от полной разупорядоченности, отнюдь не исключителен, и не только в природе. Приведём простейшие примеры.

Сжимая строго по продольной оси гибкую линейку, мы не сможем предсказать, в какую сторону она изогнётся. Качнув маятник без трения настолько сильно, чтобы он достиг точки верхнего, неустойчивого положения равновесия, но не более, мы не сможем предсказать, пойдёт ли маятник вспять или сделает полный оборот. Посылая один бильярдный шар в направлении другого, мы приблизительно предвидим траекторию последнего, но после его столкновений с третьим, а тем более с четвёртым шаром наши прогнозы окажутся очень неточными и неустойчивыми. Наращивая равномерной подсыпкой кучу песка, при достижении некоторого критического угла её склона увидим, наряду со скатыванием отдельных песчинок, непредсказуемые лавинообразные обрушения спонтанно возникающих агрегаций зёрен. Таково детерминированно-хаотическое поведение системы в состоянии самоорганизованной критичности. Закономерности механического поведения отдельных песчинок дополняются здесь качественно новыми особенностями, обусловленными внутренними связями совокупности песчинок как системы.

Принципиально похоже формируется разрывная структура породных массивов - от начального рассредоточенного микрорастрескивания к разрастанию отдельных трещин, затем - к их взаимодействиям и взаимосочленениям. Опережающее разрастание какого-то одного, заранее непредсказуемого нарушения среди конкурирующих превращает его в магистральный сейсмогенный разрыв. В этом процессе каждый единичный акт образования разрыва вызывает непрогнозируемые перестройки структуры и напряжённого состояния в массиве.

В приведённых и других подобных примерах не прогнозируемы ни конечный, ни промежуточные результаты нелинейной эволюции, определённой начальными условиями. Связано это не с воздействием множества трудно учитываемых факторов, не с незнанием законов механического движения, а с невозможностью оценить начальные условия абсолютно точно. В этих обстоятельствах даже малейшие их различия быстро разводят исходно близкие траектории развития сколь угодно далеко.

Традиционная стратегия прогнозирования катастроф сводится к выявлению отчётливой аномалии-предвестника, порождённой, например, концентрацией напряжений у окончаний, изломов, взаимопересечений разрывов. Чтобы стать достоверным признаком приближающегося толчка, такая аномалия должна быть единичной и контрастно выделяющейся на окружающем фоне. Но реальная геосреда устроена по-другому. Под нагрузкой она ведёт себя как грубо- и самоподобно-блочная (фрактальная). Это означает, что блок любого масштабного уровня вмещает относительно немного блоков меньших размеров, а каждый из них - столько же ещё меньших и т.д. В такой структуре не может быть чётко обособленных аномалий на однородном фоне, в ней присутствуют неконтрастно различающиеся макро-, мезо- и микроаномалии.

Это делает бесперспективной традиционную тактику решения проблемы. Отслеживание подготовки сейсмокатастроф одновременно в нескольких относительно близких по потенциальной опасности очагах снижает вероятность пропуска события, но в то же время повышает вероятность ложной тревоги, поскольку наблюдаемые аномалии не единичны и не контрастны на окружающем пространстве. Можно предвидеть детерминированно-хаотический характер нелинейного процесса в целом, отдельных его стадий, сценариев перехода от стадии к стадии. Но требуемые надёжность и точность краткосрочных прогнозов конкретных событий остаются недостижимыми. Давняя и почти всеобщая убеждённость в том, что любая непредсказуемость - лишь следствие недостаточной изученности и что при более полном и детальном изучении сложная, хаотичная картина непременно сменится более простой, а прогноз станет надёжным, оказалась иллюзией.

 
Статьи по теме:
Презентация по обществознанию
исслед-нияНекоторые эмпир. исслед-ния выявили наличие слишком сильной реакции потребления на изменения дохода -избыточной чувствительности потребления. Одно из возмож. объяснений этого связано с наличием ограничения ликвидности. Если некоторая часть потре
Строение луковицы, корневища, клубня Каковы основные функции стебля
ВИДОИЗМЕНЕННЫЕ СТЕБЛИ Корневища Корневище - это горизонтально растущий подземный многолетний побег с остатками отмерших листьев, почками и придаточными корнями. В корневище обычно откладываются запасные питательные вещества, однако степень его специализац
Научно-исследовательская работа
Текст работы размещён без изображений и формул. Полная версия работы доступна во вкладке "Файлы работы" в формате PDF Введение. «Подходящий момент не выбирают, не предполагают и не определяют: он заложен в вас, в ваших генах и работает от момента пробу
Производные предлоги: правила написания и список исключений
Изучая русский язык, мы делаем для себя много новых открытий о его великолепии, красоте, виртуозности. Как он многогранен, гибок и красноречив. Сегодня давайте вместе откроем для себя еще один пазл той прекрасной картины под названием «Грамматика русского