Какие оксиды вступают в реакцию с водой. «Оксиды, их классификация, свойства, применение

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Общая формула оксидов: Э х О у

Кислород имеет второе по величине значение электроотрицательности (после фтора), поэтому большинство соединений химических элементов с кисло родом являются оксидами.

К солеобразующим оксидам относят те оксиды, которые способны взаимодействовать с кислотами или с основаниями с образованием соответствующей соли и воды. К солеобразующим оксидам относятся:

  • основные оксиды, которые обычно образуют металлы со степенью окисления +1, +2. Реагируют с кислотами, с кислотными оксидами, с амфотерными оксидами, с водой (только оксиды щелочных и щелочно-земельных металлов). Элемент основного оксида становится катионом в образующейся соли. Na₂O, CaO, MgO, CuO.
  • кислотные оксиды – оксиды неметаллов, а также металлов в степени окисления от +5 до +7. Реагируют с водой, со щелочами, с основными оксидами, с амфотерными оксидами. Элемент кислотного оксида входит в состав аниона образующейся соли. Mn 2 O 7 , CrO 3 , SO 3 , N 2 O 5 .
  • амфотерные оксиды , которые образуют металлы со степенью окисления от +3 до +5 (к амфотерным оксидам относятся также BeO, ZnO, PbO, SnO). Реагируют с кислотами, щелочами, кислотными и основными оксидами.

Несолеобразующие оксиды не взаимодействуют ни с кислотами, ни с основаниями, соответственно, не образуют. N 2 O, NO, CO, SiO.

Согласно номенклатуре ИЮПАК названия оксидов составляются из слова оксид и названия второго химического элемента (с меньшей электроотрицательностью) в родительном падеже:

Оксид кальция – CaO.

Если элемент способен образовывать несколько оксидов, то в их названиях следует указать степень окисления элемента (римской цифрой в скобках после названия):

Fe 2 O 3 – оксид железа (III);

MnO 2 – оксид марганца (IV).

Допускается использовать латинские приставки для указания количества атомов элементов, входящих в молекулу оксида:

Na 2 O –оксид динатрия;

CO – монооксид углерода;

СО 2 – диоксид углерода.

Часто используются также тривиальные названия некоторых оксидов:

Примеры решения задач по теме «формулы оксидов»

ПРИМЕР 1

Задание Какая масса оксида марганца (IV), требуется для получения 14,2 г хлора из соляной кислоты?
Решение Запишем уравнение реакции:

По уравнению реакции

Найдем количество вещества :

Рассчитаем массу оксида марганца (IV):

Ответ Необходимо взять 17,4г оксида марганца (IV).

ПРИМЕР 2

Задание При окислении 16,74г двухвалентного металла образовалось 21,54г оксида. Определите металл и вычислите эквивалентные массы металла и его оксида.
Решение Масса кислорода в оксиде металла равна:

Современная химическая наука представляет собой множество разнообразных отраслей, и каждая из них, помимо теоретической базы, имеет большое прикладное значение, практическое. Чего ни коснись, все кругом - продукты химического производства. Главные разделы - это неорганическая и органическая химия. Рассмотрим, какие основные классы веществ относят к неорганическим и какими свойствами они обладают.

Главные категории неорганических соединений

К таковым принято относить следующие:

  1. Оксиды.
  2. Соли.
  3. Основания.
  4. Кислоты.

Каждый из классов представлен большим разнообразием соединений неорганической природы и имеет значение практически в любой структуре хозяйственной и промышленной деятельности человека. Все главные свойства, характерные для этих соединений, нахождение в природе и получение изучаются в школьном курсе химии в обязательном порядке, в 8-11 классах.

Существует общая таблица оксидов, солей, оснований, кислот, в которой представлены примеры каждого из веществ и их агрегатное состояние, нахождение в природе. А также показаны взаимодействия, описывающие химические свойства. Однако мы рассмотрим каждый из классов отдельно и более подробно.

Группа соединений - оксиды

4. Реакции, в результате которых элементы меняют СО

Me +n O + C = Me 0 + CO

1. Реагент вода: образование кислот (SiO 2 исключение)

КО + вода = кислота

2. Реакции с основаниями:

CO 2 + 2CsOH = Cs 2 CO 3 + H 2 O

3. Реакции с основными оксидами: образование соли

P 2 O 5 + 3MnO = Mn 3 (PO 3) 2

4. Реакции ОВР:

CO 2 + 2Ca = C + 2CaO,

Проявляют двойные свойства, взаимодействуют по принципу кислотно-основного метода (с кислотами, щелочами, основными оксидами, кислотными оксидами). С водой во взаимодействие не вступают.

1. С кислотами: образование солей и воды

АО + кислота = соль + Н 2 О

2. С основаниями (щелочами): образование гидроксокомплексов

Al 2 O 3 + LiOH + вода = Li

3. Реакции с кислотными оксидами: получение солей

FeO + SO 2 = FeSO 3

4. Реакции с ОО: образование солей, сплавление

MnO + Rb 2 O = двойная соль Rb 2 MnO 2

5. Реакции сплавления с щелочами и карбонатами щелочных металлов: образование солей

Al 2 O 3 + 2LiOH = 2LiAlO 2 + H 2 O

Не образуют ни кислот, ни щелочей. Проявляют узко специфические свойства.

Каждый высший оксид, образованный как металлом, так и неметаллом, растворяясь в воде, дает сильную кислоту или щелочь.

Кислоты органические и неорганические

В классическом звучании (основываясь на позициях ЭД - электролитической диссоциации - кислоты - это соединения, в водной среде диссоциирующие на катионы Н + и анионы остатков кислоты An - . Однако сегодня тщательно изучены кислоты и в безводных условиях, поэтому существует много разных теорий для гидроксидов.

Эмпирические формулы оксидов, оснований, кислот, солей складываются только из символов, элементов и индексов, указывающих их количество в веществе. Например, неорганические кислоты выражаются формулой H + кислотный остаток n- . Органические вещества имеют другое теоретическое отображение. Помимо эмпирической, для них можно записать полную и сокращенную структурную формулу, которая будет отражать не только состав и количество молекулы, но и порядок расположения атомов, их связь между собой и главную функциональную группу для карбоновых кислот -СООН.

В неорганике все кислоты делятся на две группы:

  • бескислородные - HBr, HCN, HCL и другие;
  • кислородсодержащие (оксокислоты) - HClO 3 и все, где есть кислород.

Также неорганические кислоты классифицируются по стабильности (стабильные или устойчивые - все, кроме угольной и сернистой, нестабильные или неустойчивые - угольная и сернистая). По силе кислоты могут быть сильными: серная, соляная, азотная, хлорная и другие, а также слабыми: сероводородная, хлорноватистая и другие.

Совсем не такое разнообразие предлагает органическая химия. Кислоты, которые имеют органическую природу, относятся к карбоновым кислотам. Их общая особенность - наличие функциональной группы -СООН. Например, НСООН (муравьиная), СН 3 СООН (уксусная), С 17 Н 35 СООН (стеариновая) и другие.

Существует ряд кислот, на которые особенно тщательно делается упор при рассмотрении данной темы в школьном курсе химии.

  1. Соляная.
  2. Азотная.
  3. Ортофосфорная.
  4. Бромоводородная.
  5. Угольная.
  6. Иодоводородная.
  7. Серная.
  8. Уксусная, или этановая.
  9. Бутановая, или масляная.
  10. Бензойная.

Данные 10 кислот по химии являются основополагающими веществами соответствующего класса как в школьном курсе, так и в целом в промышленности и синтезах.

Свойства неорганических кислот

К основным физическим свойствам нужно отнести в первую очередь различное агрегатное состояние. Ведь существует ряд кислот, имеющих вид кристаллов или порошков (борная, ортофосфорная) при обычных условиях. Подавляющее большинство же известных неорганических кислот представляет собой разные жидкости. Температуры кипения и плавления также варьируются.

Кислоты способны вызывать тяжелые ожоги, так как обладают силой, разрушающей органические ткани и кожный покров. Для обнаружения кислот используют индикаторы:

  • метилоранж (в обычной среде - оранжевый, в кислотах - красный),
  • лакмус (в нейтральной - фиолетовый, в кислотах - красный) или некоторые другие.

К важнейшим химическим свойствам можно отнести способность вступать во взаимодействие как с простыми, так и со сложными веществами.

Химические свойства неорганических кислот
С чем взаимодействуют Пример реакции

1. С простыми веществами-металлами. Обязательное условие: металл должен стоять в ЭХРНМ до водорода, так как металлы, стоящие после водорода, не способны вытеснить его из состава кислот. В результате реакции всегда образуется водород в виде газа и соль.

2. С основаниями. Итогом реакции являются соль и вода. Подобные реакции сильных кислот с щелочами носят название реакций нейтрализации.

Любая кислота (сильная) + растворимое основание = соль и вода

3. С амфотерными гидроксидами. Итог: соль и вода.

2HNO 2 + гидроксид бериллия = Be(NO 2) 2 (соль средняя) + 2H 2 O

4. С основными оксидами. Итог: вода, соль.

2HCL + FeO = хлорид железа (II) + H 2 O

5. С амфотерными оксидами. Итоговый эффект: соль и вода.

2HI + ZnO = ZnI 2 + H 2 O

6. С солями, образованными более слабыми кислотами. Итоговый эффект: соль и слабая кислота.

2HBr + MgCO 3 = бромид магния + H 2 O + CO 2

При взаимодействии с металлами одинаково реагируют не все кислоты. Химия (9 класс) в школе предполагает весьма неглубокое изучение таких реакций, однако и на таком уровне рассматриваются специфические свойства концентрированной азотной и серной кислоты при взаимодействии с металлами.

Гидроксиды: щелочи, амфотерные и нерастворимые основания

Оксиды, соли, основания, кислоты - все эти классы веществ имеют общую химическую природу, объясняющуюся строением кристаллической решетки, а также взаимным влиянием атомов в составе молекул. Однако если для оксидов можно было дать вполне конкретное определение, то для кислот и оснований это сделать сложнее.

Так же, как и кислоты, основаниями по теории ЭД называются вещества, способные в водном растворе распадаться на катионы металлов Ме n+ и анионы гидроксогрупп ОН - .

  • Растворимые или щелочи (сильные основания, изменяющие Образованы металлами I, II групп. Пример: КОН, NaOH, LiOH (то есть учитываются элементы только главных подгрупп);
  • Малорастворимые или нерастворимые (средней силы, не изменяющие окраску индикаторов). Пример: гидроксид магния, железа (II), (III) и другие.
  • Молекулярные (слабые основания, в водной среде обратимо диссоциируют на ионы-молекулы). Пример: N 2 H 4, амины, аммиак.
  • Амфотерные гидроксиды (проявляют двойственные основно-кислотные свойства). Пример: берилия, цинка и так далее.

Каждая представленная группа изучается в школьном курсе химии в разделе "Основания". Химия 8-9 класса подразумевает подробное изучение щелочей и малорастворимых соединений.

Главные характерные свойства оснований

Все щелочи и малорастворимые соединения находятся в природе в твердом кристаллическом состоянии. При этом температуры плавления их, как правило, невысоки, и малорастворимые гидроксиды разлагаются при нагревании. Цвет оснований разный. Если щелочи белого цвета, то кристаллы малорастворимых и молекулярных оснований могут быть самой различной окраски. Растворимость большинства соединений данного класса можно посмотреть в таблице, в которой представлены формулы оксидов, оснований, кислот, солей, показана их растворимость.

Щелочи способны изменять окраску индикаторов следующим образом: фенолфталеин - малиновый, метилоранж - желтый. Это обеспечивается свободным присутствием гидроксогрупп в растворе. Именно поэтому малорастворимые основания такой реакции не дают.

Химические свойства каждой группы оснований различны.

Химические свойства
Щелочей Малорастворимых оснований Амфотерных гидроксидов

I. Взаимодействуют с КО (итог -соль и вода):

2LiOH + SO 3 = Li 2 SO 4 + вода

II. Взаимодействуют с кислотами (соль и вода):

обычные реакции нейтрализации (смотрите кислоты)

III. Взаимодействуют с АО с образованием гидроксокомплекса соли и воды:

2NaOH + Me +n O = Na 2 Me +n O 2 + H 2 O, или Na 2

IV. Взаимодействуют с амфотерными гидроксидами с образованием гидроксокомплексных солей:

То же самое, что и с АО, только без воды

V. Взаимодействуют с растворимыми солями с образованием нерастворимых гидроксидов и солей:

3CsOH + хлорид железа (III) = Fe(OH) 3 + 3CsCl

VI. Взаимодействуют с цинком и алюминием в водном растворе с образованием солей и водорода:

2RbOH + 2Al + вода = комплекс с гидроксид ионом 2Rb + 3H 2

I. При нагревании способны разлагаться:

нерастворимый гидроксид = оксид + вода

II. Реакции с кислотами (итог: соль и вода):

Fe(OH) 2 + 2HBr = FeBr 2 + вода

III. Взаимодействуют с КО:

Me +n (OH) n + КО = соль + H 2 O

I. Реагируют с кислотами с образованием соли и воды:

(II) + 2HBr = CuBr 2 + вода

II. Реагируют с щелочами: итог - соль и вода (условие: сплавление)

Zn(OH) 2 + 2CsOH = соль + 2H 2 O

III. Реагируют с сильными гидроксидами: итог - соли, если реакция идет в водном растворе:

Cr(OH) 3 + 3RbOH = Rb 3

Это большинство химических свойств, которые проявляют основания. Химия оснований достаточно проста и подчиняется общим закономерностям всех неорганических соединений.

Класс неорганических солей. Классификация, физические свойства

Опираясь на положения ЭД, солями можно назвать неорганические соединения, в водном растворе диссоциирующие на катионы металлов Ме +n и анионы кислотных остатков An n- . Так можно представить соли. Определение химия дает не одно, однако это наиболее точное.

При этом по своей химической природе все соли подразделяются на:

  • Кислые (имеющие в составе катион водорода). Пример: NaHSO 4.
  • Основные (имеющие в составе гидроксогруппу). Пример: MgOHNO 3 , FeOHCL 2.
  • Средние (состоят только из катиона металла и кислотного остатка). Пример: NaCL, CaSO 4.
  • Двойные (включают в себя два разных катиона металла). Пример: NaAl(SO 4) 3.
  • Комплексные (гидроксокомплексы, аквакомплексы и другие). Пример: К 2 .

Формулы солей отражают их химическую природу, а также говорят о качественном и количественном составе молекулы.

Оксиды, соли, основания, кислоты обладают различной способностью к растворимости, которую можно посмотреть в соответствующей таблице.

Если же говорить об агрегатном состоянии солей, то нужно заметить их однообразие. Они существуют только в твердом, кристаллическом или порошкообразном состоянии. Цветовая гамма достаточно разнообразна. Растворы комплексных солей, как правило, имеют яркие насыщенные краски.

Химические взаимодействия для класса средних солей

Имеют схожие химические свойства основания, кислоты, соли. Оксиды, как мы уже рассмотрели, несколько отличаются от них по этому фактору.

Всего можно выделить 4 основных типа взаимодействий для средних солей.

I. Взаимодействие с кислотами (только сильными с точки зрения ЭД) с образованием другой соли и слабой кислоты:

KCNS + HCL = KCL + HCNS

II. Реакции с растворимыми гидроксидами с появлением солей и нерастворимых оснований:

CuSO 4 + 2LiOH = 2LiSO 4 соль растворимая + Cu(OH) 2 нерастворимое основание

III. Взаимодействие с другой растворимой солью с образованием нерастворимой соли и растворимой:

PbCL 2 + Na 2 S = PbS + 2NaCL

IV. Реакции с металлами, стоящими в ЭХРНМ левее того, что образует соль. При этом вступающий в реакцию металл не должен при обычных условиях вступать во взаимодействие с водой:

Mg + 2AgCL = MgCL 2 + 2Ag

Это главные типы взаимодействий, которые характерны для средних солей. Формулы солей комплексных, основных, двойных и кислых сами за себя говорят о специфичности проявляемых химических свойств.

Формулы оксидов, оснований, кислот, солей отражают химическую сущность всех представителей данных классов неорганических соединений, а кроме того, дают представление о названии вещества и его физических свойствах. Поэтому на их написание следует обращать особое внимание. Огромное разнообразие соединений предлагает нам в целом удивительная наука - химия. Оксиды, основания, кислоты, соли - это лишь часть необъятного многообразия.

Одним из которых является кислород в степени окисления (-2 ) .

К оксидам относятся все соединения элементов с кислородом, например Fe 2 O 3 , P 4 O 10 , кроме содержащих атомы кислорода, связанные химической связью друг с другом:

и соединения фтора с кислородом (OF 2 , O 2 F 2 ), которые следует назвать не оксидами фтора, а фторидами кислорода , так как степень окисления кислорода в них положительная.

Физические свойства оксидов

Температуры плавления и кипения оксидов меняются в очень широком интервале. При комнатной температуре они, в зависимости от типа кристаллической решетки, могут находиться в различных агрегатных состояниях. Это определяется природой химической связи в оксидах, которая может быть ионной или ковалентной полярной .

В газообразном и жидком состояниях при комнатной температуре находятся оксиды, образующие молекулярные кристаллические решетки . С увеличением полярности молекул температуры плавления и кипения повышаются (таблица 1).

Таблица 1: Температуры плавления и кипения некоторых оксидов (при давлении 101,3 кПа)

CO 2 CO SO 2 ClO 2 SO 2 Cl 2 O 7 H 2 O
T плавления ,⁰C -78 (T возгонки ) -205 -75,46 -59 -16,8 -93,4 0
T кипения , ⁰C -191,5 -10,1 9,7 44,8 87 100

Оксиды, образующие ионные кристаллические решетки, например, CaO , BaO и другие являются твердыми веществами, имеющими очень высокие температуры плавления (>1000⁰C )/

В некоторых оксидах связи ковалентные полярные. Они образуют кристаллические решетки, где атомы связаны несколькими «мостиковыми» атомами кислорода, образуя бесконечную трехмерную сеть, например, Al 2 O 3 , SiO 2 , TiO 2 , BeO и эти оксиды тоже имеют очень высокие температуры плавления.

Классификация оксидов по химическим свойствами


Несолеобразующие оксиды – оксиды, которым не соответствуют ни кислоты, ни основания.

Солеобразные оксиды – это двойные оксиды, в состав которых входят атомы одного металла в разных степенях окисления.

Металлы, проявляющие в соединениях несколько степеней окисления, образуют двойные, или солеобразные оксиды. Например, Pb 3 O 4 , Fe 3 O 4 , Mn 3 O 4 (формулы этих оксидов могут быть записаны также в виде 2PO·PbO 2 , FeO·Fe 2 O 3 , MnO·Mn 2 O 3 соответственно).

Например, Fe 3 O 4 →FeO·FeO 3 : представляет собой основной оксид FeO химически связанный с амфотерным оксидом Fe 2 O 3 , который в данном случае проявляет свойства кислотного оксида. И Fe 3 O 4 формально можно рассматривать как соль, образованную основанием Fe(OH) 2 и кислотой , которая не существует в природе:

От гидрата оксида свинца (IV) , как от кислоты, и Pb(OH 2) , как основания, могут быть получены два двойных оксида Pb 2 O 3 , Pb 3 O 4 (сурик), которые можно рассматривать как соли. Первый является свинцовой солью метасвинцовой кислоты (H 2 PbO 3 ), а второй – ортосвинцовой кислоты (H 4 PbO 4 ).

Среди оксидов, особенно среди оксидов d элементов, много соединений переменного состава (бертолиды), содержание кислорода в которых не соответствует стехиометрическому составу, а изменяется в довольно широких пределах, например, состав оксида титана (II) TiO изменяется в пределах TiO 0,65 – TiO 1,25 .

Солеобразующие оксиды – это оксиды, которые образуют соли. Оксиды этого типа делятся на три класса: основные, амфотерные и кислотные.

Основные оксиды – оксиды, элемент которых при образовании соли или основания становится .

Кислотные оксиды – это оксиды, элемент которых при образовании соли или кислоты входит в состав .

Амфотерные оксиды – это оксиды, которые в зависимости от условий реакции могут проявлять как свойства кислотных, так и свойства основных оксидов.

При образовании солей степени окисления элементов, образующих оксиды, не изменяются , например:

Если при образовании соли происходит изменение степеней окисления элементов, образующих оксиды, то получившуюся соль следует отнести к соли другой кислоты или другого основания, например:

Fe 2 (SO 4) 3 представляет собой соль, образованную серной кислотой и гидроксидом железа (III)- Fe(OH) 3 , которому соответствует оксид Fe 2 O 3 .

Образовавшиеся соли являются солями азотистой (H +3 NO 2) и азотной (H +5 NO 3) кислот, которым соответствуют оксиды:

Закономерности изменения свойств оксидов

Увеличение степени окисления и уменьшение радиуса его иона (при этом происходит уменьшение эффективного отрицательного заряда на атоме кислорода –δ 0 ) делают оксид более кислотным. Это и объясняет закономерное изменение свойств оксидов от основных к амфотерным и далее к кислотным.

А) В одном периоде при увеличении порядкового номера происходит усиление кислотных свойств оксидов и увеличение силы соответствующих им кислот.

Таблица 2: Зависимость кислотно-основных свойств оксидов от эффективного заряда на атоме кислорода

Оксид Na 2 O MgO Al 2 O 3 SiO 2 P 4 O 1023 SO 3 Cl 2 O 7
Эффективный заряд δ 0 -0,81 -0,42 -0,31 -0,23 -0,13 -0,06 -0,01
Кислотно- основные свойства оксида Основный Основный Амфотерный Кислотный

Б)В главных подгруппах периодической системы при переходе от одного элемента к другому сверху вниз наблюдается усиление основных свойств оксидов :

В)При повышении степени окисления элемента усиливаются кислотные свойства оксидов и ослабевают основные:

Таблица 3: Зависимость кислотно-основных свойств от степени окисления металлов

Список литературы: Общая и неорганическая химия, Ю. М. Коренев, В. П. Овчаренко, 2000г

Оксиды — это сложные вещества, состоящие из двух химических элементов, один из которых — кислород со степенью окисления ($-2$).

Общая формула оксидов: $Э_{m}O_n$, где $m$ — число атомов элемента $Э$, а $n$ — число атомов кислорода. Оксиды могут быть твердыми (песок $SiO_2$, разновидности кварца), жидкими (оксид водорода $H_2O$), газообразными (оксиды углерода: углекислый $CO_2$ и угарный $CO$ газы). По химическим свойствам оксиды подразделяются на солеобразующие и несолеобразующие.

Несолеобразующими называются такие оксиды, которые не взаимодействуют ни со щелочами, ни с кислотами и не образуют солей. Их немного, в их состав входят неметаллы.

Солеобразующими называются такие оксиды, которые взаимодействуют с кислотами или основаниями и образуют при этом соль и воду.

Среди солеобразующих оксидов различают оксиды основные, кислотные, амфотерные.

Основные оксиды — это такие оксиды, которым соответствуют основания. Например: $CaO$ соответствует $Ca(OH)_2, Na_2O — NaOH$.

Типичные реакции основных оксидов:

1. Основный оксид + кислота → соль + вода (реакция обмена):

$CaO+2HNO_3=Ca(NO_3)_2+H_2O$.

2. Основный оксид + кислотный оксид → соль (реакция соединения):

$MgO+SiO_2{→}↖{t}MgSiO_3$.

3. Основный оксид + вода → щелочь (реакция соединения):

$K_2O+H_2O=2KOH$.

Кислотные оксиды — это такие оксиды, которым соответствуют кислоты. Это оксиды неметаллов:

N2O5 соответствует $HNO_3, SO_3 — H_2SO_4, CO_2 — H_2CO_3, P_2O_5 — H_3PO_4$, а также оксиды металлов с большим значением степеней окисления: ${Cr}↖{+6}O_3$ соответствует $H_2CrO_4, {Mn_2}↖{+7}O_7 — HMnO_4$.

Типичные реакции кислотных оксидов:

1. Кислотный оксид + основание → соль + вода (реакция обмена):

$SO_2+2NaOH=Na_2SO_3+H_2O$.

2. Кислотный оксид + основный оксид → соль (реакция соединения):

$CaO+CO_2=CaCO_3$.

3. Кислотный оксид + вода → кислота (реакция соединения):

$N_2O_5+H_2O=2HNO_3$.

Такая реакция возможна, только если кислотный оксид растворим в воде.

Амфотерными называются оксиды, которые в зависимости от условий проявляют основные или кислотные свойства. Это $ZnO, Al_2O_3, Cr_2O_3, V_2O_5$. Амфотерные оксиды с водой непосредственно не соединяются.

Типичные реакции амфотерных оксидов:

1. Амфотерный оксид + кислота → соль + вода (реакция обмена):

$ZnO+2HCl=ZnCl_2+H_2O$.

2. Амфотерный оксид + основание → соль + вода или комплексное соединение:

$Al_2O_3+2NaOH+3H_2O{=2Na,}↙{\text"тетрагидроксоалюминат натрия"}$

$Al_2O_3+2NaOH={2NaAlO_2}↙{\text"алюминат натрия"}+H_2O$.

 
Статьи по теме:
Гера миф древней греции - древнегреческий миф читать онлайн Миф о богине гере краткое содержание
Великие истории любви. 100 рассказов о большом чувстве Мудрова Ирина Анатольевна Зевс и Гера Зевс и ГераЗевс - бог неба, грома и молний, ведающий всем миром, главный из богов-олимпийцев. Гера - третья дочь Кроноса и Реи, сестра Зевса, Деметры, Гестии,
Глеб савченко: «если бы не жена…
Входит в десятку лучших профессиональных исполнителей латино-американских танцев в мире. Эта пара радовала телезрителей весь сезон «Танцев со звездами - 2015 », и неудивительно, что она удостоились приза зрительских симпатий.К Глебу Савченко как к професс
Денис аблязин - гордость российской гимнастики
Денис Михайлович Аблязин – российский спортсмен, член сборной России по спортивной гимнастике, многократный призер Олимпийских игр, чемпион мира. Он родился 3 августа 1992 года в Пензе. Его рост достигает 161 см.Начало карьеры С детства мальчик занимался
Математика на пальцах: методы наименьших квадратов Аппроксимация экспериментальных данных методом наименьших квадратов
Метод наименьших квадратов (МНК, англ. Ordinary Least Squares, OLS ) - математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться дл